Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38640794

RESUMO

Chromatography is a robust and reliable separation method that can use various stationary phases to separate complex mixtures commonly seen in metabolomics. This review examines the types of chromatography and stationary phases that have been used in targeted or untargeted metabolomics with methods such as mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy. General considerations for sample pretreatment and separations in metabolomics are considered, along with the various supports and separation formats for chromatography that have been used in such work. The types of liquid chromatography (LC) that have been most extensively used in metabolomics will be examined, such as reversed-phase liquid chromatography and hydrophilic liquid interaction chromatography. In addition, other forms of LC that have been used in more limited applications for metabolomics (e.g., ion-exchange, size-exclusion, and affinity methods) will be discussed to illustrate how these techniques may be utilized for new and future research in this field. Multidimensional LC methods are also discussed, as well as the use of gas chromatography and supercritical fluid chromatography in metabolomics. In addition, the roles of chromatography in NMR- vs. MS-based metabolomics are considered. Applications are given within the field of metabolomics for each type of chromatography, along with potential advantages or limitations of these separation methods.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38460447

RESUMO

Human serum albumin (HSA) is known to undergo modifications by glucose during diabetes. This process produces glycated HSA that can have altered binding to some drugs. In this study, high-performance affinity microcolumns and competition studies were used to see how glycation affects the binding by two thiazolidinedione-class drugs (i.e., pioglitazone and rosiglitazone) at specific regions of HSA. These regions included Sudlow sites I and II, the tamoxifen and digitoxin sites, and a drug-binding site located in subdomain IB. At Sudlow site II, the association equilibrium constants (or binding constants) for pioglitazone and rosiglitazone with normal HSA were 1.7 × 105 M-1 and 2.0 × 105 M-1 at pH 7.4 and 37 °C, with values that changed by up to 5.7-fold for glycated HSA. Sudlow site I of normal HSA had binding constants for pioglitazone and rosiglitazone of 3.4 × 105 M-1 and 4.6 × 105 M-1, with these values changing by up to 1.5-fold for glycated HSA. Rosiglitazone was found to also bind a second region that had a positive allosteric effect on Sudlow site I for all the tested preparations of HSA (binding affinity, 1.1-3.2 × 105 M-1; coupling constant for Sudlow site I, 1.20-1.34). Both drugs had a strong positive allosteric effect on the tamoxifen site of HSA (coupling constants, 13.7-19.9 for pioglitazone and 3.7-11.5 for rosiglitazone). Rosiglitazone also had weak interactions at a site in subdomain IB, with a binding constant of 1.4 × 103 M-1 for normal HSA and a value that was altered by up to 6.8-fold with glycated HSA. Neither of the tested drugs had any significant binding at the digitoxin site. The results were used to produce affinity maps that described binding by these thiazolidinediones with HSA and the effects of glycation on these interactions during diabetes.


Assuntos
Diabetes Mellitus , Albumina Sérica Humana , Humanos , Albumina Sérica Humana/química , Hipoglicemiantes/química , Reação de Maillard , Rosiglitazona , Pioglitazona , Ligação Proteica , Albumina Sérica/química , Tamoxifeno , Digitoxina , Cromatografia de Afinidade/métodos , Sítios de Ligação
3.
Curr Protoc ; 3(8): e867, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37610261

RESUMO

Immunoaffinity chromatography (IAC) is a type of liquid chromatography that uses immobilized antibodies or related binding agents as selective stationary phases for sample separation or analysis. The strong binding and high selectivity of antibodies have made IAC a popular tool for the purification and analysis of many chemicals and biochemicals, including proteins. The basic principles of IAC are described as related to the use of this method for protein purification and analysis. The main factors to consider in this technique are also presented under a discussion of the general strategy to follow during the development of a new IAC method. Protocols, as illustrated using human serum albumin (HSA) as a model protein, are provided for the use of IAC in several formats. This includes both the use of IAC with traditional low-performance supports such as agarose for off-line immunoextraction and supports used in high-performance IAC for on-line immunoextraction. The use of IAC for protein analysis as a flow-based or chromatographic immunoassay is also discussed and described using HSA and a competitive binding assay format as an example. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Off-line immunoextraction by traditional immunoaffinity chromatography Basic Protocol 2: On-line immunoextraction by high-performance immunoaffinity chromatography Basic Protocol 3: Competitive binding chromatographic immunoassay.


Assuntos
Anticorpos Imobilizados , Anticorpos , Humanos , Cromatografia de Afinidade , Técnicas Imunológicas , Cromatografia Líquida , Albumina Sérica Humana
4.
Electrophoresis ; 43(23-24): 2302-2323, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36250426

RESUMO

Biomolecules such as serum proteins can interact with drugs in the body and influence their pharmaceutical effects. Specific and precise methods that analyze these interactions are critical for drug development or monitoring and for diagnostic purposes. Affinity capillary electrophoresis (ACE) is one technique that can be used to examine the binding between drugs and serum proteins, or other agents found in serum or blood. This article will review the basic principles of ACE, along with related affinity-based capillary electrophoresis (CE) methods, and examine recent developments that have occurred in this field as related to the characterization of drug-protein interactions. An overview will be given of the various formats that can be used in ACE and CE for such work, including the relative advantages or weaknesses of each approach. Various applications of ACE and affinity-based CE methods for the analysis of drug interactions with serum proteins and other binding agents will also be presented. Applications of ACE and related techniques that will be discussed include drug interaction studies with serum agents, chiral drug separations employing serum proteins, and the use of CE in hybrid methods to characterize drug binding with serum proteins.


Assuntos
Proteínas Sanguíneas , Eletroforese Capilar , Eletroforese Capilar/métodos , Proteínas Sanguíneas/química , Interações Medicamentosas
5.
Methods Mol Biol ; 2466: 205-227, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35585320

RESUMO

Entrapment is a noncovalent immobilization method that enables a large biological binding agent, such as a protein, to be put within a support without modifying the structure of the binding agent. This chapter describes an on-column entrapment method that can be used with proteins and HPLC-grade silica to prepare columns for high-performance liquid chromatography. In this method, a protein is trapped within a dihydrazide-activated silica support by using oxidized glycogen as a capping agent. This method allows the protein to be placed within the support in a soluble form and with little or no loss of activity. The approach and reagents needed for this method are described in this chapter, along with some applications reported for columns that have been made using on-column protein entrapment.


Assuntos
Proteínas , Dióxido de Silício , Cromatografia de Afinidade/métodos , Cromatografia Líquida de Alta Pressão/métodos , Glicogênio/química , Dióxido de Silício/química
6.
J Chem Health Saf ; 29(2): 135-164, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37556270

RESUMO

The coronavirus disease 2019 (COVID-19) epidemic, which is caused by novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has continued to spread around the world since December 2019. Healthcare workers and other medical first responders in particular need personal protective equipment to protect their respiratory system from airborne particulates, in addition to liquid splashes to the face. N95 respirator have become a critical component for reducing SARS-CoV-2 transmission and controlling the scale of the COVID-19 pandemic. However, a major dispute concerning the protective performance of N95 respirators has erupted, with a myriad of healthcare workers affected despite wearing N95 masks. This article reviews the most recent updates about the performance of N95 respirators in protecting against the SARS-CoV-2 virus in the present pandemic situation. A brief overview of the manufacturing methods, air filtration mechanisms, stability, and reusability of the mask is provided. A detailed performance evaluation of the mask is studied from an engineering point of view. This Review also reports on a comparative study about the protective performance of all commercially available surgical and respiratory masks used to combat the spread of COVID-19. With the aim of protecting healthcare providers more efficiently, we suggest some potential directions for the development of this respiratory mask that improve the performance efficiency of the mask.

7.
Electrophoresis ; 42(24): 2577-2598, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34293192

RESUMO

Affinity monolith chromatography (AMC) is a liquid chromatographic technique that utilizes a monolithic support with a biological ligand or related binding agent to isolate, enrich, or detect a target analyte in a complex matrix. The target-specific interaction exhibited by the binding agents makes AMC attractive for the separation or detection of a wide range of compounds. This article will review the basic principles of AMC and recent developments in this field. The supports used in AMC will be discussed, including organic, inorganic, hybrid, carbohydrate, and cryogel monoliths. Schemes for attaching binding agents to these monoliths will be examined as well, such as covalent immobilization, biospecific adsorption, entrapment, molecular imprinting, and coordination methods. An overview will then be given of binding agents that have recently been used in AMC, along with their applications. These applications will include bioaffinity chromatography, immunoaffinity chromatography, immobilized metal-ion affinity chromatography, and dye-ligand or biomimetic affinity chromatography. The use of AMC in chiral separations and biointeraction studies will also be discussed.


Assuntos
Cromatografia de Afinidade , Adsorção , Ligantes
8.
Adv Chromatogr ; 58: 1-74, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-36186535

RESUMO

Affinity chromatography is a technique that uses a stationary phase based on the supramolecular interactions that occur in biological systems or mimics of these systems. This method has long been a popular tool for the isolation, measurement, and characterization of specific targets in complex samples. This review discusses the basic concepts of this method and examines recent developments in affinity chromatography and related supramolecular separation methods. Topics that are examined include advances that have occurred in the types of supports, approaches to immobilization, and binding agents that are employed in this method. New developments in the applications of affinity chromatography are also summarized, including an overview on the use of this method for biochemical purification, sample preparation or analysis, chiral separations, and biointeraction studies.

9.
Bioact Mater ; 3(3): 236-244, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29744462

RESUMO

This research work blooms the new idea of developing a safe and controlled drug releasing matrix using multi-walled carbon nanotubes (MWCNTs). In aqueous solution, uniform and highly stable dispersion of MWCNTs was obtained after secondary functionalization with polyethylene glycol (PEG) which was studied by Fourier transmission infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). Solution casting method was used to prepare MWCNTs/gelatin-chitosan nanocomposite films and the effect of MWCNTs on physico-mechanical, thermal and water uptake properties of the nanocomposites were evaluated. Incorporation of MWCNTs into the porous gelatin-chitosan matrix showed interesting stiffness and dampness along with developed microfibrillar structures within the pore walls intended at being used in tissue engineering of bone or cartilage. A common antibiotic drug, ciprofloxacin was incorporated into nanocomposite matrix. The evaluation of the effect of MWCNTs on drug release rate by dissolution test and antimicrobial susceptibility test was performed. Sharp release of the drug was found at early stages (∼1 h), but the rate was reduced afterwards, showing a sustained release. It was observed that for all microorganisms, the antibacterial activities of drug loaded MWCNTs/gelatin-chitosan nanocomposites were higher than that of drug loaded gelatin-chitosan composite films containing no MWCNTs. Comparative statistical studies by ANOVA techniques also showed remarkable difference between the antibacterial activities, exhibited by MWCNTs-incorporated and non-incorporated composite films.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...